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A new variable-step procedure is developed for the numerical
integration of the one-dimensional Schrodinger equation. The new
variable-step method is based on two P-stable methods of order eight
and ten. Numerical results indicate that the new procedure is more
efficient than similar variable-step procedures. © 1993 Acadamic Press, Inc.

1. INTRODUCTION

In the last few years there has been considerable interest
in the numerical solution of the initial-value problems of the
form

Yixy=flx, y),  ylxo)=yo.  ¥Yixo)=yo. (L1)
involving ordinary differential equatiens of second order in
which the derivative does not appear explicitly. Equations
having oscillatory solutions are of particular interest. Exam-
ples occur in celestial mechanics, in quantum mechanical
scattering problems, and eisewhere. The one-dimensional
Schrédinger equation is a member of this family of
equalions.

The numerical solution of this equation is discussed by
several authors (see Cash et al. [4]). We refer to the works
of Allison [1], Raptis and Cash [17], Raptis and Allison
[181], and Ixaru and Berceanu [147].

Until 1980 the most important property for the numerical
solution of the problem (1.1) was the interval of periodicity
and the P-stability. Another related concept, which is
important when solving problems of the form (1.1), is the
phase-lag of the method. This property was introduced by
Brusa and Nigro [3].

Recently, several methods with minimal phase-lag have
been proposed for the numerical integration of the initial-
value problem (1.1). Chawla and Raoc [6-9] have
developed methods with phase-lag of order six and eight.
Also, Thomas [22] has given a two-step sixth-order
method with phase-lag of order eight. Van der Houwen and
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Sommeijer [23,24] have derived some methods with
minimal phase-lag, _

Coleman [11] has given a new approach to construct
methods for the numerical integration of y" = f(x, y) via
rational approximation for the cosine.

Simos and Raptis [207] have proposed P-stable methods
with minimal phase-lag. Also, Raptis and Simos [16] have
given the required conditions to construct four-step methods
with minimal phase-lag with large interval of periodicity
and they have produced a four-step phase-fitted method.
Finally Simos [217] has produced a two-step method with
algebraic order six and phase-lag order infinity.

The purpose of this paper is to develop two-step
predictor-corrector P-stable methods of order eight and ten.
Based on these methods a new variable-step procedure
is developed for the numerical integration of the one-
dimensional Schrodinger equation.

Numerical results presented in Section 3 show that this
new variable-step procedure is much more efficient than
other variable-step procedures.

It must be noted that this new method can be useful in
cases where a large step-size is to be used; that is, where a
modest accuracy is sufficient or in case of problems where
the solution consists of a slowly varying oscillation with a
high-frequency oscillation superimposed, having a small
amplitude,

2. THE NEW METHODS

2.1. Basic Theory

When we apply any direct two-step integration method to
the scalar test equation

yr=—wip, (2.1)
we obtain the difference equation,
QZ(H)yn+1+Q1(H)yn+QO(H}ynﬁl=0! H=1Wh,
(2.2)
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where @, j=0, 1, 2, are polynomials in H, h is the integra-
tion step, and y, is the numerical approximation to y(x,)
(n=0, 1, ...). The general solution to the difference equation
(2.2)is

Vo= B2+ B,z3, (2.3)

where B, (j=1, 2) are constants which may be determined
from the initial conditions and z, and z, are the zeros of the
stability pelynomial

Ple, HY=Qy(H) * + Q\(H) e+ Qo(H).  (24)

DeFNITION 1 [157. A method to solve the problem
(1.1) is said to have a periodicity interval (0, H,) if, for all
He (0, Hy), the roots of the stability polynomial (2.4)
satisfy

o= er‘S(H)

(2.5)

cy=e 71'.9(;{],
where 9 is a real function of H = wh.

DeFNITION 2 [13]. A method is said to be P-stable if its
interval of periodicity is (0, o).

DermiTIoN 3 [137]. The solution of the characteristic
equation P(e, H) =0 is said to be of order p (p= 1), if one
of the roots of P(c, H) (i.c., one of the roots (2.5)) satisfies
e —c (H)=CH?* '+ O(H?*?) H-0, (2.6)

for
where C (#0) is the error constant of ¢,(H).

ProrositioNn 1 [13). If the solution of the equation
P(c, Y= is of order p (p = 1} with error constant C, then

P(e”, Hy=3P(1,0)/0c2CH "+ + O(H?*?) for H—0.

(2.7)
Consider the algebraic equation

Ple, r)=[T,r) To(—)1¢* = (T3} + Th(=)]e

+[T.(r) T, (—1)] (2.8)
with re C and T, given by
mim—1)r?
T, (r)=1 +;”—n;+5nﬁ+

mim—1)---1r" (29)

2m2m—1)---(m+ 1) m!’
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The roots of (2.8) are given by

() =cor) ™ =T r)T(—r): (2.10)
ie., we are dealing with the (s, m) Padé approximant to
exp(H). So, if we take H = iwh, those roots are going to be
conjugate complex numbers and always lie in the unit circle.
They are the solution of order 2m of Egs. (2.8):

H-0.

e —c,(H)=CH**'+ O(H*"*?}  for

2.2, Construction of the New Pairs

For the numerical integration of the initial-value.problem
(1.1) consider the family of two-step methods:

yn,m7j=yn—h2(b0j+1fn+l+bij+lfn.mfj71

+ 00541 Su1) (2.11}
Qo Vui1 T8 Yt doYn_)
=h2(b0fn+l +blfn,m+b() n—1)9 (212)
where
fn+1=f(xn+la J’n+1),
f"7 =f(xn— ’yﬂ‘— )’
' bt (2.13)

1= F (X5 Vo),

fn,0=f(xn1 yn)a j=m_1,”1—2,...,0.

We investigate the cases m=3 and m=4. Applying
(2.11)-(2.13) to (2.1) we have the stability polynomial of the
new methods :

OQolH) c*+ Q(H)c+ Qu(H),  H=iwh, (2.14)
where:
(1) Case m=3:
Qo(H)=ay—boH?*+ b by H* — b\ b, by H®
+ b5y, bab HY, (2.15)
Ql(H)=al_51H2+b1b11H4—b1bubsz6
+b1b11b12b13H8.
(2) Case m=4.
QO(H)=ao_b0H2+b1b01H4_b1bnbozH6
+blbllblzb03HS—bibnblzbmbmHm (2.16)

Q(H)y=a,—b,H*+b b, H*— bbb, H®
+ b5y byb HY —biby bbb HY.
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Based on (2.8)-(2.10), if we impose the conditions

QO(H)::Tm+l(H) Tm+l(_H)

(2.17)
Ql(HJ= _[T?»+1(H)+ Tiqt-}(_H)J!

identifying terms in both of them, we obtain a system of
2{m+2) equations and 2(m+ 2) unknowns. Its solution
determines the coefficients of a linear symmetric method of
two-siep, m stages and P-stability of order 2(m + 1).

(1) Case m=3. In this case, from (2.17) with m =3, we
have a system of 10 equations with 10 unknowns from
which we find that

ag=1, by=1/28, by =3/3640,
bor= —1/3468, by, =1/1520,

02 / 03 / (2_18)
a=-2, b;=13/14, b, = —285/5460,

b= —19/1734, b3= —1/760.

(2) Case m=4. From (2.17) with m=4 we have a

system of 12 equations with 12 unknowns from which we
find that

ao=1, by=1/36, by, =1/2142,

b= —1/10240, by =1/13608, by, = — 173480,
ay=—2, b =17/18, b, = —64/1071, (2.19)
biy=—81/5120, b= —29/6804,

bie= —1/1740.

Based on {2.18) and (2.19) we have the next theorem:,

THEOREM L. The methods (2.11)(2.13) with coefficients
given by (2.18) and (2.19) are P-stable, are of order eight and
ten, and have phase-lag of order eight and ten, respectively.

Proof. The methods are of order eight and ten as
we proved by previous analysis (see Definition 3 and

(2.73-(2.19)).

If we apply the method (2.1}-(2.3) to the scalar test
equation (2.1) with coefficients given by (2.18) and (2.19) we
obtain the characteristic polynomial:

So(H) ¢* —28,(H) ¢ + So(H), (2.20)
where

(1) Case m=3.

So(H) =1+ H?/28 + 3H*/3920
+ HS/70560 + H5/2822400
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and
Si(HY=1-13H7?/28 + 289H*/11760 — 19H %/70560
+ HE/2822400; (2.21)
(2} Case m=4,
So(H)=1+ H?*/36+ H*/2268 + H%/181440
+ H®/15240960 + H '°/914457600
and
S(H)=1—17TH?/36 + 16H /567 - H®/2240
+ 29H¥/15240960 — H '°/914457600.  (2.22)

A symmetric two-step method is P-stable if for all
He (0, ©) So{H)+ 5,(H)=0. From (2.21) and (2.22) is
obvious that the new methods are P-stable.

DeFinTION 4 [23]. For any method corresponding to
the characteristic polynomial {2.20), the quantity

HH)=H—cos '[S,(H)/S(H)] (2.23)

is called the dispersion or phase error or phase-lag. I t{H) =
O(H9*'yas H — 0 the order of dispersion is q.

Remark 1 [117]. If the order of dispersion is g = 2r, s0

that
HHY=cHY '+ O(H¥*?), (2.24)
then
cos(H) — 5 (H)/Se(H)=cos(H) —cos(H — 1)
=cHY* 24+ O(H”*%). (225
So we have
(1) Case m=13.

cos(H)— S,(H)/So(H) = H'%/25401600 + O(H '?);

1.e., the method has phase-lag of order eight and
(2} Case m=4,

cos(H)— S,(H)/S(H) = H'/10059033600;
i.e., the method has phase-lag of order ten.
From the above relations it is obvious that the new

methods are P-stable and have phase-lag of much higher
order than the known P-stable methods.
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The new schemes are:

(1) Case m=3,

yn,l=ynkk2/]520(fn+l ‘;zfn+fn71)
Va2 =pu+ 1234680/, . +38f, 4 Sl )
Va3 =y,— 010920031, —578f,,+ 3/, )

yn+l_2yn+yn—l=h2/28(fn+l+26fn,3+fn—])'

(2) Case m=4.

Yor =y, +h/3480(f, 4+ 21, + 1, 1)
Yn2= Y= W 13608(S, 1 = 581+ fuo i)
Yz = Yo+ H10280(f, ,  + 1621, 2+ fu_ 1)
Yua= Yo~ W2082f, 0 —128f05+ )

yn+l_2yn+yn71 =h2/36(fn+1+34fn,4+fn71)

3. NUMERICAL ILLUSTRATION

The radial or one-dimensional Schrddinger equation may

be written as

y'(x)=f(x) - plx),  xe[0, o), (3.1)
where f(x) = W(x)— E, and Wix)=[(/+1)/x*+ F(x)is an
effective potential with #{x)— 0 as x - o, [ is an integer,
and E is a real number denoting the energy.

The problem is one of the boundary-value type, with
$(0)=0, and a second boundary condition for large values
of x determined by physical considerations.

If E= p*>0, then, in general, the potential function ¥(x)
dies away faster than the term /({+ 1)/x?; then Eq. (3.1)
effectively reduces to y"(x)+ (E— I+ 1)/x*) y(x)=0, for
x which is greater than some value R depends on the poten-
tial function ¥(x). The above equation has linearly inde-
pendent solutions pxj,{ px} and pxn,{px}, where j,(px) and
n;(px) are the spherical Bessel and Neumann functions,
respectively. Thus the solution of Eq.{3.1) has the
asymptotic form

y(x)

X

= Apxji(px)— Bpxn)(px)

=, Clsin{ px — In/2) + tan d, cos( px — In/2)],

X

where d, is the phase shift which may be calculated from the
formuia

Ly(xy) S(x)— p{x) S(x,)]
[y(x)) Clx;)— yix;) Clx, )]

tan d;= (3.2)
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for x, and x, distinct points on the asymptotic region with
S(x) = pxj,(px) and C(x) = — pxn,(px).

When the potential becomes very small (ie, in our
numerical example | ¥(x)| < 0.01) then, if we have a change
of the sign of the function y(x) we calculate the phase shift
d; from (3.2). Then, we repeat the calculation of the phase
shift until [d9' — @2 < ACC, where ACC is the wanted
accuracy of the calculated phase shifts, d§' is the previous
value of the phase shift, and 47" is the new value of the
phase shift (for full details see {5]).

We illustrate the new methods derived in Section 2 by
applying them to the solution of (3.1), where V{x) is the
Lenard—Jones potential which has been widely discussed in
the literature. For this problem the potential ¥(x) is given
by

Vix)=m(1/x'?—1/x®), where m=1500. (3.3)

The problem we consider is the computation of the rele-
vant phase shifts correct to four decimal places (analogous
conclusions we have with the calculation of phase shifts
correct to three decimal places). We will consider three
separate approaches:

(1) based on the combination of the “classical” method
described in [19] and the exponential fitting method
described in [17].

(2) based on the combination of the “classical” method
described in [19] and the Bessel fitting method described
in [17].

(3) based on the two methods described in Section 2.

We note that the procedures (1) and (2) consist of
methods in which the coefficients must be calculated in each
step-size change (Procedure (1)}, or in each step (Proce-
dure (2)). Our new procedure consists of methods with
constant coeflicients,

We will describe the numerical integration procedure and
the associate local error estimation for the new procedure.
Procedures (1) and (2} are exactly described in [17] and are
used without modification.

Denoting the solution obtained using the eighth-order
formuia as y~ and the solution obtained using the tenth-
order formula as y¥ and under the assumption that # is
sufficiently small so that the local error in y7 | can be
neglected compared with that in y), |, an estimate of the
local truncation error in y¥, | is

LTE=y7 ,—»2., (3.4)

So, our variable-step procedure is
(1) if [LTE| <TOL, 4,,,=2h,
(2) if 100 TOL > |LTE|>TOL, &,,,=h,

(3) if |LTE|>100TOL, h,.,=h,/2 and repeat the
step.
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TABLEI TABLE III
TOL=10"% TOL=10"*% TOL=10"% TOL=10"% TOL=10"% TOL =107
Exponential fitting Bessel fitting New Exponential fitting Bessel fitting New
method method method method method method
Phase Phase
! shift Nosteps Time  Nosteps Time Nosteps Time ! shift Nosteps Time  Nosteps Time Nosteps Time
0 01544 102 0.95 79 0.72 83 .66 0 —0.4331 229 192 155 1.45 175 1.30
1 1.2328 119 1.06 79 0938 86 0.75 1 1.0449 2R 1.88 162 1.85 170 1.55
2 —1.4297 124 1.10 80 1.04 38 0.80 2 —0.7159 280 2.26 160 1.85 175 1.55
3 0.7832 117 1.09 69 0.85 85 0.75 3 0.5687 283 235 161 1.94 173 1.52
4 0.1258 103 095 64 0.85 83 0.67 4 —1.3858 285 2.50 157 [.95 170 1.50
5 0.0366 108 0.95 68 0.93 84 0.69 3 —0.2984 286 2.52 157 1.95 174 1.55
6 00147 117 1.04 68 111 85 0.75 6  0.6868 287 245 156 1.92 172 1.55
7 0.0068 105 091 62 0.96 83 0.66 7 1.5662 281 2.42 152 1.98 170 1.48
8 00036 115 0.99 64 092 85 0.75 8 —0.8060 324 27 154 2.04 170 1.52
9 00020 128 1.10 71 1.07 39 0.82 3 —0.0525 336 2.82 152 1.97 168 1.47
10 0.0012 144 1.25 75 1.15 92 087 10 03778 348 2.97 152 222 168 1.47
Note. k=10 and k;=004, accuracy in phase shifts four decimal Note. k=100 and hy, =001, accuracy in phase shifts four decimal

places. ity = initial interval

In Tables I-11I we present the phase shifts correct to four
decimal places, the number of step, and the real time of
computation.

It is casy for one to see that the new variable-step method
is much more efficient than other variable-step procedures,
It must be noted that the computational cost is smaller
because the new procedure has constant coefficients while
the other procedure have variable coefficients which must
be recalculated in every step change (exponentially fitting
procedure) or in every step {Bessel fitting procedure).

All computations were carried out on an IBM PC AT 386
with 387 mathcoprossesor with double precision arithmetic
in 16 digits accuracy.

TABLE II
TOL=10-* TOL =10-% TOL =10"%
Exponential fitting Bessel fitting New
method method method
Phase

i shift Nosteps  Time Nosteps Time Nosteps Time
0 —04831 176 1.50 147 1.30 162 1.22
1 09282 206 1.75 147 1.70 180 1.50
2 —0.9637 202 1.68 145 1.58 178 1.50
3 0.1206 208 1.78 146 1.65 180 1.50
4 10328 216 1.82 147 1.67 182 1.50
5 —1.3785 229 1.97 146 1.68 185 1.52
6 —0.8441 226 1.93 147 1.78 184 1.52
7 —0.5256 192 1.74 112 1.37 137 1.21
8 —04575 274 2.25 108 1.34 135 1.18
9 —0.75M 188 1.68 109 1.56 136 118
10 14148 183 1.66 106 1.48 133 1.17
Note. k=350 and hy=001, accuracy in phase shifts four decimal

places. by =initial interval.

places. by = initial interval,

—_
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